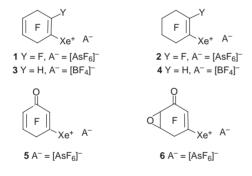
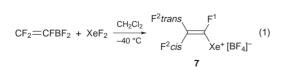
Trifluorovinylxenon(II) tetrafluoroborate


H.-J. Frohn^{*a} and V. V. Bardin^b

^b Institute of Organic Chemistry, Lotharstr. 1, 630090 Novosibirsk, Russia

Received (in Basel, Switzerland) 18th February 1999, Accepted 2nd April 1999

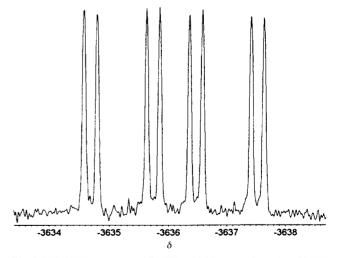

The first acyclic alkenylxenon(II) compound, trifluorovinylxenon(II) tetrafluoroborate, was prepared from XeF₂ and trifluorovinylboron difluoride and characterized by ¹³C, ¹⁹F and ¹²⁹Xe NMR spectroscopy.

In 1993 we reported the first preparation of the cyclic alkenylxenon(II) compounds, (heptafluorocyclohexa-1,4-dien-1-yl)xenon(II) **1** and (nonafluorocyclohexen-1-yl)xenon(II) **2** hexafluoroarsenates by stepwise fluorine addition to $[C_6F_5Xe]^+[AsF_6]^-$ using XeF₂ in anhydrous HF (aHF).¹ Later (2-H-hexafluorocyclohexa-1,4-dien-1-yl)xenon(II) **3** and (2-H-octafluorocyclohexen-1-yl)xenon(II) **4** tetrafluoroborates² were obtained in a similar manner from (2,3,4,5-tetrafluorophenyl)xenon(II) tetrafluoroborate. Electrophilic oxygenation of $[C_6F_5Xe]^+[AsF_6]^-$ with XeF₂ and stoichiometric amounts of H₂O in HF gave (3-oxopentafluorocyclohexa-1,4-dien-1-yl)xenon(II) **5** and (3-oxo-4,5-epoxypentafluorocyclohexen-1-yl)xenon(II) **6** hexafluoroarsenates.³

All these synthetic routes to cyclic alkenylxenon(II) salts are based on the functionalization of arylxenon(II) salts and are restricted to the preparation of compounds with cyclohexadienyl- and cyclohexenyl-xenon(II) skeletons.

The topic of this paper is the elaboration of an alternative and new strategy and a more general approach to the synthesis of fluoroalkenylxenon(II) compounds: the reaction of XeF₂ with polyfluoroalkenylboron difluorides. When XeF₂ was reacted with trifluorovinylboron difluoride at -40 °C in CH₂Cl₂ the first acyclic alkenylxenon(II) salt, trifluorovinylxenon(II) tetrafluoroborate **7**,† was obtained in very good yield [eqn. (1)].

Salt 7 is a white solid which decomposes above *ca*. 0 °C. It is insoluble in CH₂Cl₂ but dissolves well in anhydrous HF (aHF), MeCN and EtCN. Its solution in aHF is stable at room temperature for some hours (monitored by ¹⁹F NMR), whereas in MeCN (basic medium) 7 decomposes slowly above -20 °C and rapidly at room temperature with formation of xenon and some uncharacterized polyfluoroolefins.


The ¹⁹F NMR spectrum⁴ of the vinylxenon salt **7** in aHF (-30 °C) consists of resonances at δ -81.91 (F-2 *trans*) [²J(F-2

trans)-(F-2 *cis*) 42 Hz, ³*J*(F-2 *trans*)–(F-1) 105 Hz], -100.13 (F-2 *cis*) [³*J*(F-2 *cis*)–(F-1) 126 Hz], -126.36 (F-1), -148.22 ([BF₄]⁻, br) and HF at δ –190.83. All resonances of fluorine atoms bonded to carbon have ¹²⁹Xe satellites corresponding to the natural abundance of ¹²⁹Xe (*I* = 1/2) of 26.4%: ³*J*(F-2 *cis*)-(¹²⁹Xe) 30 Hz, ³*J*(F-2 *trans*)–(¹²⁹Xe) 146 Hz and ²*J*(F-1)–(¹²⁹Xe) 248 Hz.

Resonances⁴ of the carbon atoms C-1 and C-2 in the ¹⁹Fdecoupled ¹³C NMR spectrum of **7** were located at δ 100.60 and 148.77, respectively and both displayed ¹²⁹Xe satellites: ¹*J*(C-1)–(¹²⁹Xe) 131 Hz and ²*J*(C-2)–(¹²⁹Xe) 18 Hz. For comparison, the resonance of the carbon atom C-1 in the ¹³C NMR spectrum of (nonafluorocyclohexen-1-yl)xenon(II) hexafluoroarsenate **2** in aHF (-10 °C) occurs at δ 96.28 and ¹*J*(C-1)–(¹²⁹Xe) is 114 Hz.¹

The ¹²⁹Xe NMR spectrum⁴ of compound **7** in aHF (-30 °C) displays a doublet of doublets of doublets at δ -3636.1($\Delta v_{1/2}$ = 13 Hz) [²J(¹²⁹Xe)–(F-1) 248 Hz, ³J(¹²⁹Xe)–(F-2 *cis*) 30 Hz, ³J(¹²⁹Xe)–(F-2 *trans*) 146 Hz] (Fig. 1). This deshielding of the xenon atom in **7** is remarkable when compared to δ (¹²⁹Xe) values of the (polyfluorocycloalken-1-yl)xenon(II) compounds **1–6** (δ -3912.3, -3858.4, -3771.8, -3714.0, -3916.2 and -3900.3, respectively)^{1–3} and is probably the result of a strong 'through-space' electronic interaction of the xenon atom with the geminal fluorine atom F-1. This consideration is also in agreement with the large value of ²J(¹²⁹Xe)–(F-1), which is the largest of the the known coupling constants in organoxenon compounds.

The ¹⁹F NMR spectrum of a solution of **7** in EtCN at -40 °C consists of resonances at δ -84.97 (F-2 *trans*) [²*J*(F-2 *trans*)-(F-2 *cis*) 46 Hz, ³*J*(F-2 *trans*)-(F-1) 90 Hz], -103.36 (F-2 *cis*) [³*J*(F-2 *cis*)-(F-1) 124 Hz], -137.81 (F-1) and -149.59 ([BF₄]⁻) [³*J*(F-2 *cis*)-(¹²⁹Xe) 29 Hz, ³*J*(F-2 *trans*)-(¹²⁹Xe) 139 Hz, ²*J*(F-1)-(¹²⁹Xe) 191 Hz]. The ¹²⁹Xe NMR signal was located at δ -3510.6 [²*J*(¹²⁹Xe)-(F-1) 197 Hz, ³*J*(¹²⁹Xe)-(F-2)

Fig. 1¹²⁹Xe NMR resonance of **7** (aHF, -30 °C, 5 mm glass tube with FEP inliner, measured on a Bruker DRX 500 spectrometer at 138.34 MHz; shift values relative to neat XeOF₄ at 24 °C.

cis) 27 Hz, ³J(¹²⁹Xe)–(F-2 trans) 136 Hz]. Cooling to -70 °C led to shielding of the fluorine atom F-1 and a decrease of ${}^{2}J(F-$ 1)-(129Xe) to 188 Hz resulting from a favoured cation-anion interaction over the cation-EtCN interaction: $\delta - 84.09$ (F-2 trans) [²J(F-2 trans)–(F-2 cis) 46 Hz, ³J(F-2 trans)–(F-1) 88 Hz], -102.62 (F-2 *cis*) [³*J*(F-2 *cis*)–(F-1) 123 Hz], -138.27 (F-1) and -150.31 ([BF₄]⁻) [³J(F-2 cis)–(¹²⁹Xe) 28 Hz, ³J(F-2 trans)-(129Xe) 136 Hz].

Chemical proof of the carbon-xenon bond and of the electrophilic nature of the vinylxenon(II) cation in 7 was obtained by conversion into trifluoroiodoethene with loss of Xe⁰ when a solution of 7 in EtCN was treated with NaI in excess at ≤ -30 °C [eqn. (2)] (*cf.* ref. 6).

$$\begin{array}{c} F \\ F \\ F \\ \end{array} \begin{array}{c} F \\ Xe^{+} [BF_{4}]^{-} \end{array} \xrightarrow{+ excess Nal} F \\ \hline EtCN/-30 \ ^{\circ}C \\ F \\ \end{array} \begin{array}{c} F \\ F \\ \end{array} \end{array} \begin{array}{c} F \\ F \\ \end{array} \begin{array}{c} F \\ F \\ \end{array} \begin{array}{c} F \\ F \\ \end{array} \end{array} \begin{array}{c} F \\ F \\ \end{array} \end{array} \begin{array}{c} F \\ \end{array} \begin{array}{c} F \\ F \\ \end{array} \end{array} \begin{array}{c} F \\ F \\ \end{array} \end{array} \begin{array}{c} F \\ \end{array} \begin{array}{c} F \\ F \\ \end{array} \end{array} \begin{array}{c} F \\ F \\ \end{array} \end{array} \begin{array}{c} F \\ \end{array} \end{array} \begin{array}{c} F \\ \end{array} \end{array} \begin{array}{c} F \\ \end{array} \end{array}$$
 \end{array}

In summary, the trifluorovinylxenon cation is of great importance for preparative and theoretical chemistry because it is an unique precursor for the trifluorovinyl radical and cation.

We gratefully acknowledge Volkswagen Stiftung and Fonds der Chemischen Industrie for financial support.

Notes and references

[†] Synthesis of trifluorovinylxenon(II) tetrafluoroborate 7: a solution of XeF₂ (1.83 mmol) in CH₂Cl₂ (15 ml) was cooled to -40 °C and added to a solution of trifluorovinylboron difluoride (1.54 mmol) in dichloromethane (10 ml) at -40 °C under a dry argon atmosphere. After stirring at -40 to -50 °C for 5 h the mother liquor was decanted and the residual product was washed and dried under vacuum to yield compound 7 (1.30 mmol, 85 %)

- 1 H.-J. Frohn and V. V. Bardin, J. Chem. Soc., Chem. Commun., 1993, 1072
- H.-J. Frohn and V. V. Bardin, Z. Naturforsch., Teil B, 1998, 53, 562.
 H.-J. Frohn and V. V. Bardin, Z. Naturforsch., Teil B, 1996, 51, 1011.
- 4 The NMR shift values are relative to CCl₃F (¹⁹F), TMS (¹³C) and XeOF₄ (129Xe).
- 5 H.-J. Frohn, A. Klose, T. Schroer, G. Henkel, V. Buss, D. Opitz and R. Vahrenhorst, Inorg. Chem., 1998, 37, 4884
- 6 H.-J. Frohn and V. V. Bardin, Z. Anorg. Allg. Chem., 1996, 622, 2031.

Communication 9/01380F